Some numerical radius inequalities for products of Hilbert space operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharper Inequalities for Numerical Radius for Hilbert Space Operator

We give several sharp inequalities for the numerical radius of Hilbert space operators .It is shown that if A and B are bounded linear operators on complex Hilbert space H , then 1 2 1 2(1 ) 2(1 ) 2 2 2 2 1 ( ) 2 ( ) 2 r r r r r r w A B A B A B A B α α α α − − − ∗ ∗ ⎛ ⎞ + ≤ + + + + + ⎜ ⎟ ⎝ ⎠ , for 0<r 1 ≤ and ( ) 1 , 0 ∈ α , and if ( ) n A M ∈ , then 2 1 ( ) 4 w A ≤ ( ) 2 2 A A A A ∗ ∗ + + − , ...

متن کامل

extend numerical radius for adjointable operators on Hilbert C^* -modules

In this paper, a new definition of numerical radius for adjointable operators in Hilbert -module space will be introduced. We also give a new proof of numerical radius inequalities for Hilbert space operators.

متن کامل

Some Lower Bounds for the Numerical Radius of Hilbert Space Operators

We show that if T is a bounded linear operator on a complex Hilbert space, then 1 2 ‖T‖ ≤ √ w2(T ) 2 + w(T ) 2 √ w2(T )− c2(T ) ≤ w(T ), where w(·) and c(·) are the numerical radius and the Crawford number, respectively. We then apply it to prove that for each t ∈ [0, 12 ) and natural number k, (1 + 2t) 1 2k 2 1 k m(T ) ≤ w(T ), where m(T ) denotes the minimum modulus of T . Some other related ...

متن کامل

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

Some improvements of numerical radius inequalities via Specht’s ratio

We obtain some inequalities related to the powers of numerical radius inequalities of Hilbert space operators. Some results that employ the Hermite-Hadamard inequality for vectors in normed linear spaces are also obtained. We improve and generalize some inequalities with respect to Specht's ratio. Among them, we show that, if $A, Bin mathcal{B(mathcal{H})}$ satisfy in some conditions, it follow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2019

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil1907089h